Regularized gradient-projection methods for finding the minimum-norm solution of the constrained convex minimization problem
نویسندگان
چکیده
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Assume that g is a real-valued convex function and the gradient ∇g is [Formula: see text]-ism with [Formula: see text]. Let [Formula: see text], [Formula: see text]. We prove that the sequence [Formula: see text] generated by the iterative algorithm [Formula: see text], [Formula: see text] converges strongly to [Formula: see text], where [Formula: see text] is the minimum-norm solution of the constrained convex minimization problem, which also solves the variational inequality [Formula: see text], [Formula: see text]. Under suitable conditions, we obtain some strong convergence theorems. As an application, we apply our algorithm to solving the split feasibility problem in Hilbert spaces.
منابع مشابه
An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...
متن کاملAn accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems
The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...
متن کاملA General Iterative Method for Constrained Convex Minimization Problems in Hilbert Spaces
It is well known that the gradient-projection algorithm plays an important role in solving constrained convex minimization problems. In this paper, based on Xu’s method [Xu, H. K.: Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150, 360-378(2011)], we use the idea of regularization to establish implicit and explicit iterative methods for finding the approximate ...
متن کاملAveraged Mappings and the Gradient-Projection Algorithm
It is well known that the gradient-projection algorithm (GPA) plays an important role in solving constrained convex minimization problems. In this article, we first provide an alternative averaged mapping approach to the GPA. This approach is operator-oriented in nature. Since, in general, in infinite-dimensional Hilbert spaces, GPA has only weak convergence, we provide two modifications of GPA...
متن کاملSolving the L1 regularized least square problem via a box-constrained smooth minimization
In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property ”the dual of dual is primal” holds for the L1 regularized least square problem. A solver for the smooth pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017